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Abstract: We implement a peer-to-peer (P2P) energy trading system between prosumers and 

consumers using a smart contract on Ethereum blockchain. The smart contract resides on a block-

chain shared by participants and hence guarantees exact execution of trade and keeps immutable 

transaction records. It removes high cost and overheads needed against hacking or tampering in 

traditional server-based P2P energy trade systems. The salient features of our implementation in-

clude: 1. Dynamic pricing for automatic balancing of total supply and total demand within a mi-

crogrid, 2. prevention of double sale, 3. automatic and autonomous operation, 4. experiment on a 

testbed (Node.js and web3.js API to access Ethereum Virtual Machine on Raspberry Pis with 

MATLAB interface), and 5. simulation via personas (virtual consumers and prosumers generated 

from benchmark). Detailed description of our implementation is provided along with state dia-

grams and core procedures. 

Keywords: smart contract; peer-to-peer energy trading; blockchain; Ethereum; dynamic pricing; 

microgrids 

 

1. Introduction 

With the introduction of renewable energy resources, traditional energy consumers 

are becoming “prosumers” who use photovoltaic panels or wind power generators to 

generate energy and make profit by selling the surplus energy after consumption to 

neighboring consumers. The direct energy trade among prosumers and consumers is 

called peer-to-peer (P2P) energy trading. A node participating in a P2P energy trading 

system stores generated energy in an energy storage system (ESS) and the smart meter 

may record change of energy due to generation, consumption, out-flow and in-flow. 

However, without intervention by the trusted third party, it is impossible or hard to 

guarantee trust between participants, determine the price of energy trading, or fulfill the 

agreement automatically or forcibly in conventional P2P energy trading systems [1]. In 

addition, these server-based systems are vulnerable to hacking and tampering unless 

costly firewalls are installed. The cost and maintenance overheads resulting from this 

security enforcement may be formidably high for small-scale P2P trading within a mi-

crogrid. We leverage blockchain technology [2] to remove the cost and the overhead 

while guaranteeing integrity of trading records. The salient features of our P2P energy 

trading system are as follows: 

(1) Dynamic pricing for automatic balancing of total supply and total demand 

within a microgrid: We assume that our energy trading system within a microgrid will 

help prosumers and consumers to trade small amounts of energy in each short trading 

period, for example, an hour. Under this assumption, it would be cumbersome for 

prosumers and consumers to bid or ask in every trade for each period. To avoid this 

hassle, in our system, a single price is determined for each period as a function of total 

demand and total supply submitted. The price increases/decreases per each period de-
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pend on the ratio of total demand over total supply. The increased/decreased price will 

encourage/discourage supply/demand for prosumers (consumers) in the next trading 

period. The speed of convergence is adjustable for faster convergence or stable operation 

through manipulation of the pricing formula. This mechanism will help our trading 

system automatically achieve equilibrium (total supply = total demand) or operate close 

to it without any intervention by a third party. 

(2) Prevention of double sale: Since energy is traded online, it is imperative to 

guarantee that the same energy is not sold more than once. For this, we introduce an en-

ergy ownership structure and implement it inside a smart contract [3] on Ethereum 

blockchain [4]. The energy ownership structure guarantees integrity for every state 

change of energy: “Injected”, “On-board for sale”, “Matched” and so on. Change of 

states is only allowed for qualified participants and protected from any hacking or tam-

pering by any unauthorized party. For example, injection of energy is only verified by 

DSO (distribution system operator) and hence only the DSO is qualified to update the 

corresponding state with its private key. Traditionally, the DSO is responsible for almost 

everything for trading on the energy market and is vulnerable to hacking or tampering. 

In our system, we replace the DSO by Ethereum blockchain as much as possible, ex-

cluding indispensable parts such as transmission, confirmation of injection and pricing 

policy. Matching, payment, prevention of double sale, et cetera, are automatically and 

forcefully executed by a smart contract, free from hacking or tampering. 

(3) Automatic and autonomous operation: The trading procedure is implemented as 

a smart contract on Ethereum and hence trade in each period is performed automatically 

and autonomously. At the start of each trading period, prosumers and consumers send 

request_to_sell and request_to_buy, respectively, to the smart contract. The consumers 

deposit enough money to cover their purchase to the smart contract. The smart contract 

collects all the requests and computes an energy price according to a preset formula. 

Matching and clearing are also performed by the smart contract. Thus, all the proce-

dures are automatic and autonomous, requiring neither intervention of third parties nor 

costly firewalls. The smart contract performs as an escrow between prosumer, consumer 

and DSO to ensure that the promised transaction is actually delivered. In our current 

implementation, the DSO is responsible for transmission and withdrawal of power. The 

DSO uses its private key to create a digital signature which guarantees transmission and 

withdrawal of power. As for payment, the smart contract performs as an escrow to veri-

fy the delivery of power by the DSO and to ensure that the payment is done accordingly. 

(4) Experiment on a testbed: Many known works in the literature on trading on 

blockchain sketch their schemes without actual implementation. We perform an experi-

ment on a testbed using Raspberry Pis as prosumers, consumers and a DSO. All nodes 

have their own virtual machine called Ethereum Virtual Machine (EVM) [5] on which a 

smart contract is executed. Prosumers, consumers and DSO use Node.js and web3.js API 

to control Geth (a command line interface to access EVM). The GUI is built with 

MATLAB [6]. 

(5) Simulation via persona: We borrow from existing energy production and con-

sumption data to create virtual prosumers and consumers to experiment on our testbed. 

We generate personas in such a way that they respond to price increase/decrease to in-

crease/decrease supply or decrease/increase demand, correspondingly. Their behaviors 

are programmable to suit any scenario. 

The rest of the paper is organized as follows: In Section 2, we summarize related 

works. Our P2P energy trading system with dynamic pricing mechanism and state dia-

gram is presented in Section 3. Implementation on a private Ethereum blockchain is de-

scribed in Section 4. The experiment using a testbed with persona is shown in Sections 5 

and 6 concludes this paper. 
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2. Related Works 

2.1. Pricing Models 

The double auction is a mechanism involving both buyers and sellers, which sim-

ultaneously participate in the bidding process and are allocated individual shares of the 

resource [7]. An aggregator communicates with the other agents about the supply, de-

mand and bidding price that each buyer is willing to pay and implements a distributed 

double auction algorithm to determine price. Asynchronous double auction mechanism, 

another double auction model proposed in [8], can be used as a P2P energy trading 

technique. The matching priority and the prices are determined by the amount of energy 

and bidding price possible between a preset upper limit and a lower limit. In double 

auction models, all participants manually bid or ask, which may be cumbersome or 

time-consuming. 

Several dynamic pricing models are proposed for smart grids: quadratic cost func-

tion (QCF) [9], usage-based dynamic pricing (UDP) [10], distributed demand response 

(D2R) [11] and distributed dynamic pricing (D2P) [12]. QCF [9] uses a neural network 

for piecewise QCF. If this model is applied to pricing, the microgrid decides the price 

only depending on the supply. As a result, consumers may have to pay higher prices 

even though the total demand within the microgrid is low. In UDP [10], real-time pric-

ing is performed as a quadratic function with energy demand as a variable during peak 

hours. Otherwise, the price is fixed. In [11], the price is the k-square of energy demand. 

The cost incurred by consumers depends directly on the energy demand even though 

the microgrids have excess surplus energy to serve. As a result, consumers may not 

consume more energy, even at lower prices, thus wasting excess surplus energy. 

To consider both supply and demand, in [12], real-time pricing is performed from 

the minimum price and the difference between total supply and total demand. The price 

decreases with an increase in the supply from the prosumers while the demand from the 

consumers is either fixed or decreased. On the other hand, the price increases with an 

increase in the demand, while the supply is either fixed or decreased. Thus, prosumers 

and consumers can control supply or demand according to the price. However, the price 

is determined only depending on the difference. So, the price may be the same whether 

the ratio of demand over supply changes or not, if the difference remains same. 

Going on further from the proposed D2P model, Chekired, Khoukhi and Mouftah 

[13] propose a pricing model that considers both the difference and the ratio between the 

total demand and total supply in round 𝑡. The dynamic real-time price changes accord-

ing to the variation in the difference and the ratio by using exponential and arctangent 

functions. However, this pricing model is not very adaptive to the change in de-

mand/supply ratio as we show in Section 3. We devise a dynamic pricing scheme which 

is more adaptive and adjustable in controlling the speed of convergence to equilibrium 

(total demand = total supply). Details will be provided in Section 3. 

2.2. Blockchain Technology 

Blockchain [14] is a distributed ledger over a P2P network where the encrypted data 

is shared and recorded to all participating nodes in a chronological order. The transac-

tions are collected into a block when they are considered valid through a validation 

process known as a proof of work (POW). Ethereum [4] is a programmable blockchain 

for building decentralized applications, allowing anyone to write smart contracts [3]. In 

Ethereum we can create our own arbitrary rules for ownership, transaction formats and 

station transition functions. In this paper, we implement a smart contract-based P2P en-

ergy trading system on Ethereum blockchain. 

The smart contract is a blockchain-based program that encodes the conditions for 

fulfillment of an agreement between participants. It automatically executes the agree-

ment when the conditions are met. It can be written in Solidity language [15] and can be 

built on top of the Ethereum platform. It should be more like an autonomous agent that 
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resides in the Ethereum execution environment. Thus, it always executes a specific code 

when a message or transaction is transmitted and has direct control over its own balance 

and its own key/value store to keep track of persistent variables [4]. 

The term transaction is used in Ethereum to refer to a signed data package that 

stores records on the blockchain and is sent from an externally owned account. If the 

smart contract is mined to a block, residing on the blockchain, it has a unique address 

(the smart contract address). It is of the same type as the externally owned account and 

controlled by the smart contract code. All nodes can execute the smart contract function 

by sending a transaction referring the smart contract address. When the smart contract 

address receives a transaction, its code activates, allowing it to read from or write to in-

ternal storage and perform various actions. 

In addition, the smart contract has an object called event. The event is an abstraction 

of the Ethereum logging/event-watching protocol. Log entries provide the smart contract 

address, a series of up to four topics and some arbitrary length binary data [15]. If an 

event is called by the smart contract, all nodes can detect and watch the event because 

they run and share the same state of the smart contract. Thus, participating nodes execute 

the function and action in accordance with the results of the smart contract event. 

2.3. Blockchains in Energy Trading 

R. Skowronski [16] proposed open-trade through blockchain and a hierarchy-based 

control of flows for the first time. R. Skowronski [17] tackles the problematics of aiding 

cyber-physical systems through blockchain-based VMs(Virtual Machines). 

Priwatt [18] is a decentralized P2P energy trading system, which provides anony-

mous communication channels and the means to form agreements without trusting oth-

er parties by using Bitmessage [19] and multi-signature techniques. It is built upon 

Bitcoin [20] blockchain. The system can be applied to the microgrids. The nodes partici-

pating in the network are assumed to be prosumer, consumer and distribution system 

operator (DSO), which confirms injection of energy and is responsible for actual trans-

mission of energy ensuing trade. 

When a prosumer injects the surplus energy to sell, the DSO sends a private message 

to the prosumer with two secret keys which verify the prosumer’s ownership and can be 

used as a lock to prevent double spending. Participants use auction panel and send a 

private message to negotiate energy trading. When matching between a prosumer and a 

consumer is complete, the energy agreed for the sale is locked and the prosumer creates a 

2-of-3 multi-signature transaction that requires two out of three signatures (i.e., 

prosumer, consumer and DSO) to be executed. 

Then the consumer specifies the input tokens and signs the transaction. After re-

ceiving the payment, the prosumer sends the energy ownership to the consumer [18]. In 

the Priwatt system, if there is a dispute between participants, DSO mediates the issue to 

resolve. In addition, trading procedures such as payment, change of energy ownership 

and execution of trading contracts are not implemented automatically because the system 

is based on the Bitcoin system. 

In our system, based on Ethereum, we devise a dynamic pricing algorithm which 

balances between demand and supply within a microgrid. We also design a state dia-

gram for our energy trading procedure. We implement our dynamic pricing algorithm 

and trading procedures in a smart contract on Ethereum. The smart contract in our 

Ethereum implementation removes any disputes and executes energy trading proce-

dures automatically. It also prevents double sale problems by keeping the changes in 

energy ownership as trading is performed inside a structure array embedded in the 

smart contract, and hence is free from any tampering. 

Personas are archetypal users who embody the goals and aspirations of real users 

in an easy-to-assimilate and personable form [21]. They have attributes that represent a 

specific person or group and act like them. Recently, personas have been widely used for 

designing user experiences. 
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In our study, we set up virtual personas that act according to given conditions re-

lated to energy trading. They act as prosumers or consumers and make virtual transac-

tions in the system. The prosumers’ supply depends on the prices. Furthermore, de-

mands of consumers varies depending on the price. Using these virtual personas, simu-

lation of the pricing model proposed in this study is performed. 

3. The Proposed P2P Energy Trading System with Dynamic Pricing 

3.1. Dynamic Pricing 

The main objective of our dynamic pricing algorithm is to balance supply and de-

mand among prosumers and consumers within a microgrid. For example, if total de-

mand in a trading round exceeds the total supply, then the price of each energy unit will 

be increased to discourage demand. Our dynamic pricing enables our energy trading 

system to reach equilibrium in which total supply matches total demand within a mi-

crogrid. For microgrids of small or medium size, we find bidding algorithms [7,8] un-

practical since they require human monitoring and involvement per each trading period 

(e.g., 1 h or 30 min) for small amounts of energy. Instead, we choose to use one price per 

each trading round, which is determined only on the total supply and total demand 

submitted at the start of each trading period. 

Let us denote total supply and total demand at the start of trading round 𝑡 as 

𝐸𝑆(𝑡) and 𝐸𝐷(𝑡) as shown in Equations (1) and (2): 

𝐸𝑆(𝑡) = ∑ 𝑆𝑖(𝑡)

𝑛𝑝

𝑖=1

 (𝑆𝑖(𝑡) ≥ 0) (1) 

𝐸𝐷(𝑡) = ∑ 𝐷𝑗(𝑡)

𝑛𝑐

𝑗=1

 (𝐷𝑗(𝑡) ≥ 0) (2) 

where 𝑆𝑖(𝑡) is the supply of prosumer i; 𝐷𝑗(𝑡) is the demand of consumer j; and 𝑛𝑝 

and 𝑛𝑐 are the numbers of prosumers and consumers. 

𝑅(𝑡) and 𝐷(𝑡) denote the ratio and the difference between total demand and total 

supply, respectively, as in Equations (3) and (4). 

𝑅(𝑡) =
𝐸𝐷(𝑡)

𝐸𝑆(𝑡)
 (3) 

𝐷(𝑡) = 𝐸𝐷(𝑡) − 𝐸𝑆(𝑡) (4) 

Chekired, Khoukhi and Mouftah [13] have proposed a dynamic real-time pricing 

using 𝑅(𝑡) and 𝐷(𝑡) as in Equation (5). 

𝑝(𝑡) = {𝑡𝑎𝑛−1(𝑒𝐷(𝑡)) + (𝑡𝑎𝑛−1𝑅(𝑡))10} + 𝑝𝑚𝑖𝑛 (5) 

We observe from (5) that if total supply (𝐸𝑆(𝑡)) greatly exceeds total demand 

(𝐸𝐷(𝑡)), the price is reduced to 𝑝𝑚𝑖𝑛, which is the minimum price (usually imposed by 

the DSO or the management of the microgrid to cover basic expenses for generating en-

ergy). The price 𝑝(𝑡) varies between (𝑝𝑚𝑖𝑛 , (
𝜋

2
) + (

𝜋

2
)10 +  𝑝𝑚𝑖𝑛). To conform to pricing 

guides by electrical companies, it uses exponential and arctangent functions, keeping the 

resulting price in a given interval [13]. The price is increased rather slowly until demand 

greatly exceeds supply. The price curve is not suitable for our purpose of balancing the 

demand and supply since the curve is not symmetric. Later we will compare our dy-

namic pricing algorithm against this pricing.  

3.2. The Proposed Dynamic Pricing Algorithm 

Our dynamic pricing algorithm is represented in Equation (6) and Figure 1. 
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𝑝(𝑡) =
2

𝜋
(𝑝𝑐𝑜𝑛) ∙ 𝑡𝑎𝑛−1((ln𝑅(𝑡))𝑘) + 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (6) 

𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒  is a price when total demand is equal to total supply (𝑅(𝑡)=1). We use 𝑝𝑐𝑜𝑛 

to determine the range of price (𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 𝑝𝑐𝑜𝑛, 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 𝑝𝑐𝑜𝑛). 

Since lim
𝑅(𝑡)→0

𝑡𝑎𝑛−1((ln𝑅(𝑡))𝑘) = −
𝜋

2
 and lim

𝑅(𝑡)→∞
𝑡𝑎𝑛−1((ln𝑅(𝑡))𝑘) =

𝜋

2
, the price 𝑝(𝑡) 

ranges from 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 𝑝𝑐𝑜𝑛 to 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 + 𝑝𝑐𝑜𝑛. If total demand matches total supply, in 

other words, 𝑅(𝑡) is 1, 𝑝(𝑡) is set to 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒. In this way, we may choose the balance 

price as well as the minimum price and the maximum price. We think that one price per 

trading round reduces the burden of prosumers and consumers. They may choose their 

own way in reacting to this price change. They may increase supply or reduce demand 

according to their preset rules. The rules can be represented as a line, curve or step func-

tion of supply/demand against price. For DSO, the exponent “k” in Equation (6) can be 

used to control the price curve as illustrated in Figure 2 for k = 3, 5 and 7. In Section 5 we 

show how this enables DSO to make a tradeoff between convergence speed and exact-

ness of balancing to suit its purpose.  

Figure 1 compares our pricing model in Equation (6) against Chekired et al. [13] in 

Equation (5). We assume that 𝑡𝑎𝑛−1(𝑒𝐷(𝑡)) of Equation (5) is 0 because it tends to be a 

very small number. In our model, When 𝑅(𝑡) is 1, the price 𝑝(𝑡) becomes 100 which is 

preset as 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 . Additionally, the price exhibits saturation near the maximum or min-

imum price. On the other hand, in Chekired et al. [13] as Equation (5) continues to in-

crease price even if 𝑅(𝑡) is more than 102 as in Figure 1b. Furthermore, when 𝑅(𝑡) is 

smaller than 100, price hardly changes even when demand further increases. It shows 

asymmetry and it is hard to set up saturation near maximum or minimum. Our pricing 

model exhibits symmetry and saturation near maximum and minimum. 

   

(a) 𝑅(𝑡) = (10−1, 101) (b) 𝑅(𝑡) = (0.2 × 10−2, 5 × 102) 

Figure 1. Comparison of our pricing model (solid red line) with (k = 3) against Chekired et al. [13] (dotted blue line), with 

𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 100, 𝑝𝑐𝑜𝑛 = 30. (a) 𝑅(𝑡) = (10−1, 101) (b) 𝑅(𝑡) = (0.2 × 10−2, 5 × 102). 

Figure 2 shows 𝑝(𝑡) against 𝑅(𝑡) with k = 3, 5 or 7, respectively. If 𝑅(𝑡) is very 

small, 𝑝(𝑡) is close to the minimum price (=70) and if 𝑅(𝑡) is large, 𝑝(𝑡) converges to 

the maximum price (=130). When 𝑅(𝑡) is 1, 𝑝(𝑡) is 100, which is the 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 . Price 

changes symmetrically against 𝑅(𝑡) in log scale. In addition, the slope of the price curve 

changes depending on the k. Our proposed pricing model can easily choose 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒  and 

𝑝𝑐𝑜𝑛 as needed by the DSO, utility companies, government authorities or microgrid 

managements.  
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Figure 2. The proposed dynamic pricing with varying k (𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = 100, 𝑝𝑐𝑜𝑛 = 30). 

3.3. The State Diagram Representation and Solidity Program 

For state diagram representation of our trading system, we assume that the partici-

pating nodes in the energy trading blockchain within a microgrid are prosumers, con-

sumers and the DSO. Prosumers increase/decrease energy supply in reaction to price in-

crease/decrease. A consumer buys energy from prosumers for their own need. Consum-

ers reduce/increase energy consumption in reaction to price increase/decrease. The 

smart contract uses Equations (1)–(3) and (6) to determine energy price for each trading 

period (e.g., hour, day). The DSO acts as an operator or manager of the blockchain net-

work. It is for energy transmission and a smart contract for energy trading. It creates, 

upgrades and distributes a smart contract. Furthermore, DSO adjusts the exponent “k” in 

Equation (6) to determine how quickly it will reach equilibrium. 

We define states for each prosumer or consumer and show how the states change in 

each phase. Refer to Algorithm 1 with Table 1 at the end of Section 4 which shows our 

implementation of trading procedure in a Solidity-like pseudo-code. Solidity [15] is a 

widely used programming language for developing smart contracts on Ethereum. The 

states are implemented using enum type in Solidity. The enum allows programmers to 

define a set of allowed members [15]. We choose this feature to define five states of en-

ergy for each prosumer or consumer as “register”, “injected”, “board”, “match” and 

“purchased” (line 8 of Algorithm 1). Figures 3 and 4 illustrate state changes for prosum-

ers and consumers. 𝑃𝑖(𝑡) 𝑜𝑟 𝐶𝑗(𝑡) denotes the state of prosumer i or that of consumer j 

respectively, within the microgrid in phase t. 
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Figure 3. A state diagram for prosumer i in phase t = 0, 1, 2, 3 and 4 of energy trading. 

 

Figure 4. A state diagram for consumer j in phase t = 0, 1, 2, 3 and 4 of energy trading. 

Any prosumer or consumer intending to trade energy should register with the pri-

vate Ethereum blockchain associated with the microgrid. It enters phase 0 after registra-

tion. The registration is performed by sending a transaction which executes the “Regis-

ter” function (line 12 of Algorithm 1). The function txAddr𝑃𝑖 .sendtx(Resister, timestamp) 

sends the transaction to smcAddr which is the address of the smart contract responsible 

for energy trading. Line 13 or line 17 initializes state vectors (O𝑝𝑖 and O𝑐𝑗) representing 

amounts of energy in the course of energy trading. 

𝑃𝑖(𝑡) or 𝐶𝑗(𝑡) has a vector of three states, respectively. {𝐼𝑖(𝑡), 𝐵𝑖(𝑡), 𝑀𝑖(𝑡)} repre-

sents injected energy, energy on board for sale and energy matched for trading for a 

prosumer i. {𝐵𝑗(𝑡), 𝑀𝑗(𝑡), 𝑃𝑗(𝑡)} represents energy intended to buy, energy matched for 

trading and energy paid for a consumer j. 

The vectors of states are defined by using struct EnergyOwnership in lines 9–10. 

Lines 13 and 17 show instantiation of state vectors for prosumer i and consumer j. The 
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events invoked by the smart contract on receipt of “Register” transaction from joining 

prosumer i and consumer j initialize the vectors of states for prosumer (line 14) and 

consumer (line 18), respectively. 

Prosumer i injects the surplus energy 𝐸𝑖 into the microgrid by executing the IN-

JECTENERGY procedure (lines 21–26 of Algorithm 1 at the end of Section 4). In line 22, 

prosumer i sends an encrypted message to the DSO (msgAddrD). The message contains 

the amount of injected energy and is signed by the private key of the prosumer i. The 

DSO verifies the signature, checks if the claimed injection is complete and sends a con-

firming transaction (signed by the private key of the DSO) to the smart contract (line 23). 

The smart contract verifies the signature of the DSO (line 24) to invoke an event which 

updates the state vector for prosumer i with injected energy 𝐸𝑖  (line 25). 

Note that only the DSO, which physically controls transmission of energy, can con-

firm the injection or delivery of energy. Thus, in our implementation of the energy trad-

ing smart contract, we require the signature of the DSO to update the amount of injected 

energy in the state vector for prosumer i. Therefore, hackers, whether in or out of the 

blockchain, cannot tamper with it. After injection, the state of the prosumer i changes to 

phase 1, 𝑃𝑖(1), and the amount of injected energy 𝐼𝑖(1) is set to 𝐸𝑖. 

Prosumer i publishes its intent to sell energy of 𝑆𝑖(𝑡) on board by executing the 

“RequestSell” function (line 30). The state changes to 𝑃𝑖(2). 𝐵𝑖(2), on-board energy for 

sale, is set to 𝑆𝑖(𝑡) and 𝐼𝑖(2) is decreased to 𝐸𝑖  −  𝑆𝑖(𝑡). When matching phase begins by 

the “Matching” function (line 41), the state changes to 𝑃𝑖(3). The amount of matched 

energy (actually sold) is 𝑆𝑚𝑖
 as in lines 42–49. The unmatched energy (remaining after 

sale), 𝑆𝑖(𝑡)  − 𝑆𝑚𝑖
, is returned to “injected”. Thus, the amount of energy with the state 

vector 𝐼𝑖(3) is 𝐸𝑖  −  𝑆𝑚𝑖
. When the matching is complete and the DSO executes the 

“Trade” function (line 57), prosumer i receives payment 𝑆𝑚𝑖
∙ 𝑝(𝑡) from the smart con-

tract (line 59) and changes to 𝑃𝑖(4). Prosumer i can inject surplus energy 𝑆𝑖(𝑡)  −  𝑆𝑚𝑖
 

again, i.e., 𝐼𝑖(4) = 𝐸𝑖  −  𝑆𝑚𝑖
. 

Consumer j puts its intent to buy on board to purchase the amount of energy 𝐷𝑗(𝑡) 

by sending the transaction that executes the “RequestBuy” function (line 35). Consumer j 

deposits the amount of 𝐷𝑗(t) ∙ 𝑝𝑚𝑎𝑥 to the smart contract by sending the transaction that 

executes the “Transfer” function (line 37). The state of consumer j changes to 𝐶𝑗(1) with 

𝐵𝑗(1) = 𝐷𝑗 . In the matching phase, the “Matching” function is executed (line 41) and the 

state of consumer j changes to 𝐶𝑗(2) with matched amount of energy 𝑀𝑖(2) = 𝐷𝑚𝑗
 

(lines 42–49 for calculation).  

When the matching is complete and the DSO executes the “Trade” function (line 57), 

the consumer receives the refund of 𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥  — 𝐷𝑚𝑗
∙ 𝑝(𝑡) from the smart contract 

(line 62) where 𝑝(𝑡) is the price for phase t as determined by Equation (6). The state of 

consumer j changes to 𝐶𝑗(3). Consumer j obtains the ownership of the amount of energy 

𝑃𝑗 = 𝐷𝑚𝑗
. Consumer j can receive the energy from the DSO by using this ownership and 

then the state changes to 𝐶𝑗(4). 

4. The Proposed P2P Energy Trading Implementation on a Private Ethereum Block-

chain 

Figure 5 shows the software architecture of our P2P energy trading system. All 

nodes (prosumers, consumers and the DSO) have their own virtual machine called 

Ethereum Virtual Machine (EVM) [5] on which a smart contract is executed. Each node 

uses Node.js and web3.js API to conveniently control Geth. Geth [22] is a command line 

interface for running a full Ethereum node implemented in Go language and is able to 

access the EVM. To execute a smart contract on EVM, a node needs a Solidity compiler 

called solc.js API to compile the smart contract.  
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Figure 5. The software architecture of proposed peer-to-peer (P2P) energy trading implementation 

on a private Ethereum blockchain. 

Smart contracts on Ethereum can be written in Solidity [15] language. Participating 

nodes send transactions including which functions to execute, parameters required to 

execute the function, compiled bytecode of the smart contract and the corresponding 

smart contract address. When the transactions are mined into a block, all nodes execute 

the smart contract functions with the given parameters. Then the EVMs of all nodes run 

the function and maintain the same state. 

Ethereum blockchain provides an identity-based messaging system which is called 

Whisper [23]. Whisper provides anonymity and privacy in a trustless network via 

broadcasting encrypted messages in messaging streams. Every node may have symmet-

ric and asymmetric keys and use an envelope which is a packet sent and received in 

Whisper. All messages are encrypted either symmetrically or asymmetrically and nodes 

use the keys to decrypt received envelopes [23]. 

Note that messages are transmitted through Whisper without causing traffic on the 

Ethereum block since they are not mined into a block. In this paper, Whisper messaging 

is used to generate an element with the state of “Injected” when a prosumer injects the 

surplus energy. Whisper can be activated on Geth, which is a command line interface of 

Ethereum, through shh function of Whisper API. 

The nodes participating in the blockchain network for energy trading are prosum-

ers, consumers and a DSO, depending on their roles. Prosumers produce energy and may 

sell surplus energy to other consumers within the same microgrid. The DSO, an operator 

of the blockchain network, is responsible for transmission of energy among participants. 

It also creates/updates smart contracts for energy trading and manages the blockchain 

network. Algorithm 1 at the end of Section 4 shows Solidity-style pseudo code of smart 

contract for energy trading. 

Lines 3–5 in Algorithm 1 perform initialization. A participating node X (X = 𝑃𝑖 , 𝐶𝑗, 

or DSO) has a pair of addresses, txAddr𝑋 and msgAddr𝑋. For example, prosumer 𝑃𝑖  has 

txAddr𝑃𝑖  and msgAddr𝑃𝑖 . txAddr𝑋 is an externally owned account of Ethereum reserved 

for X. Only X may access the account using its private key. msgAddr𝑋 is an identity to 

which other nodes may send encrypted messages for node X using the Whisper protocol 

[23]. It allows a node to send messages to other nodes without going through the 

Ethereum blockchain, saving time-consuming consensus. Transactions to txAddr𝑋 
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should go through the Ethereum blockchain and hence suffer latency needed for con-

sensus. 

The DSO broadcasts a smart contract code for energy trading to the blockchain for a 

microgrid. The smart contract is mined into a block, creating a smart contract account 

smcAddr (Line 6). Every participating node may send valid transactions to the smcAddr 

for executing any smart contract functions. 

4.1. Prevent Tampering of Transaction Records 

Each transaction involving an externally owned account should include a digital 

signature (using a private key) from the owner of the account. The owner is responsible 

for the transaction it sends and the digital signature guarantees authentication and 

non-repudiation. The transaction is mined into a block when verified as valid [24]. The 

transaction in a mined block is regarded as immutable through a mathematical proof 

[20]. 

4.2. Prevent Double Sale of Energy 

Double sale of energy refers to the case in which a malicious node tries to sell the 

same energy twice or more. To prevent double sale of energy, our system keeps the 

states of the energy inside a smart contract. The smart contract specifies which nodes are 

qualified to update which states under what conditions. Thus, updating of the states is 

only possible through the private key(s) of the qualified node(s). There is no way that 

hackers may possibly tamper these states without compromising the required private 

key(s). 

For example, the amount of energy injected by prosumer (𝑃𝑖) can be updated only 

by the DSO using its private key after it physically checks the amount of injected energy 

with its smart meter. Then the 𝑃𝑖  may send a transaction of “Request_to_Sell” with a 

specified amount of energy which is equal to or less than the “injected” energy. A pri-

vate key of prosumer 𝑃𝑖  is needed for this update transaction to the smart contract. 

Now that amount of energy changes its state from “injected” to “board”. 

Each participant has a state vector representing its own energy as illustrated in Fig-

ure 6. The state vector is implemented as an array called energy ownership structure. 

The state vector is kept inside a smart contract and hence can only be updated by the 

qualified node(s) or the smart contract itself. In the following subsection, we describe a 

state diagram which shows the changes in the state vectors of prosumers and consum-

ers. 

  

(a) Prosumer 1 injects the energy (𝐸1 = 8000) after “register”. 
(b) Prosumer 1 puts the supply (𝑆1 = 5000) on board for sale 

(intends to sell). 
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(c) The amount of “matched” energy: (𝑆𝑚1
= 4200) the amount sold 

for prosumer 1, (𝐷𝑚1
= 2700) the amount purchased for consumer 

1. 

(d) The consumer obtains the energy ownership (𝑃1 = 2700) 

after the “Trade” function is executed. 

Figure 6. Illustration of change in the energy ownership in accordance with trading procedures. 

4.2.1. Implementation of State Diagram 

We use enum, a data type defined in Solidity [15], to implement state diagrams in 

Figures 3 and 4. Enum allows us to define a set of elements to be allowed in the energy 

state vector. Using this feature, we define five energy states in the state vector for each 

participant: “register”, “injected”, “board”, “match” and “purchased”. In line 8 of Algo-

rithm 1, an enum data type is declared with the above five states. When a prosumer i or 

a consumer j first joins the blockchain network, it should register itself by sending a 

“Register” transaction to the smart contract (lines 12–19 of Algorithm 1). The “Register” 

procedure initializes the states of prosumer i and consumer j to 𝑃𝑖(0) and 𝐶𝑗(0), respec-

tively. The amounts of energy in all the state vectors are initialized to zero. 
{𝐼𝑖(0), 𝐵𝑖(0), 𝑀𝑖(0)} = {0, 0, 0} and {𝐵𝑗(0), 𝑀𝑗(0), 𝑃𝑗(0)} = {0, 0, 0}. 

When prosumer i injects the surplus energy 𝐸𝑖  through the INJECTENERGY pro-

cedure (lines 21–26), its state changes to 𝑃𝑖(1) and 𝐼𝑖(1) is set to 𝐸𝑖. When prosumer i 

decides to sell the amount 𝑆𝑖(𝑡) in this round of trading, it should send a transaction 

which executes the “RequestSell” function (line 30). The state of prosumer i transitions to 

𝑃𝑖(2) and 𝐵𝑖(2) (energy on board for sale) becomes 𝑆𝑖 and 𝐼𝑖(2) is set to 𝐸𝑖  −  𝑆𝑖(𝑡). 

When the DSO starts a matching phase by sending a transaction to execute the “Match-

ing” function (line 41), the state of prosumer i changes to 𝑃𝑖(3). 

Mi(3) is set to 𝑆𝑚𝑖
, the amount of energy actually matched to be sold, which is less 

than or equal to 𝑆𝑖(𝑡). 𝑆𝑚𝑖
 is computed in lines 42–49. If 𝑆𝑖(𝑡)  −  𝑆𝑚𝑖

 is greater than 

zero, we have 𝐼𝑖(3) = 𝐸𝑖  −  𝑆𝑚𝑖
. 

When the matching is complete and the DSO executes the “Trade” function (line 

57), prosumer i receives payment 𝑆𝑚𝑖
∙ 𝑝(𝑡) from the smart contract (line 59) and its 

state changes to 𝑃𝑖(4). Then the prosumer can either inject the remaining energy again 

or put it on board for sale. 

Consumer j sends a transaction that executes the “RequestBuy” function (line 35) to 

state its intention to purchase the amount of 𝐷𝑗(𝑡). If the transaction is confirmed valid, 

the consumer deposits settlement cost 𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥  to the smart contract address by 

sending a transaction that executes the “Transfer” function (line 37). Then the state of 

consumer j changes to 𝐶𝑗(1) and 𝐵𝑗(1) is set to 𝐷𝑗 . When the matching phase is started 
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by the “Matching” function (line 41), the state changes to 𝐶𝑗(2). The amount of energy in 

the state vector 𝑀𝑗(2) is set to 𝐷𝑚𝑗
 as computed in lines 42–49. 

When the matching is complete and the DSO executes the “Trade” function (line 

57), the consumer receives 𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥  − 𝐷𝑚𝑗 ∙ 𝑝(𝑡) as change from the smart contract 

(line 62) and the state changes to 𝐶𝑗(3). The consumer receives the energy ownership 

that it has purchased and the amount of energy is set to 𝐷𝑚𝑗
. The consumer can receive 

the energy from the DSO by using this ownership and its state changes to 𝐶𝑗(4). 

4.2.2. Energy Ownership Structure 

We choose to represent the states of energy for prosumers and consumers in arrays. 

Each array represents a prosumer or a consumer. On registration, the first element is 

created and the “state” of the element is set to “register”. In lines 9–19, the energy own-

ership structure that includes account, amount, state and timestamp is declared in an 

array 𝑂𝑝𝑖 for prosumer i (line 13) and 𝑂𝑐𝑗  for consumer j (line 17). Figure 6 illustrates 

changes in the energy ownership for prosumer 1 and consumer 1 in accordance with 

trading procedures. The changes of energy ownership are recorded in the smart contract 

as in Figure 6. 

All prosumers and consumers must have an element with the state of “register” as 

the first element of the array to participate in energy trading. A transaction for executing 

the smart contract function appends, changes or deletes subsequent elements in accord-

ance with the trading procedures. As shown in Figure 6a, when prosumer 1 injects the 

energy, an element with the state of “injected” is appended to the array by the DSO (line 

25). As shown in Figure 6b, when prosumer 1 makes a request to sell the energy, an ele-

ment with the state of “board” is appended (line 32). At the same time, the amount of 

the element with the state of “injected” is reduced accordingly (line 33). As shown in 

Figure 6c, when the “Matching” function is executed, the element with the state of 

“board” is deleted (line 50). Elements with the state of “match” are appended to the 

prosumer’s array (line 51) and consumer’s array (line 53). A new element with the state 

of “injected” for unmatched energy is appended (line 52). Finally, as shown in Figure 6d, 

when the “Trade” function is executed, elements with the state of “match” are deleted 

(lines 60 and 63) and an element with the state of “purchased” is appended (line 64). 

In addition, as shown in Figure 7, elements with the state of “injected” or “pur-

chased” exist in multiple elements of the array. Aggregation is performed (line 29) 𝑂𝑝𝑖 

and 𝑂𝑐𝑗. 

  

(a) (b) 

Figure 7. Example of aggregation of multiple elements: (a) Before aggregation and (b) after aggregation. 
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4.2.3. Prevent Double Sale Using Smart Contract 

We prevent double sale of energy by keeping the energy states inside a smart con-

tract as shown in Figure 8. Smart contract functions are executed only when a calling 

transaction meets the conditions preset in the smart contract. The conditions may desig-

nate sender, parameter and previous states, et cetera. Assume a malicious node sends 

two transactions to sell the same energy to two different consumers. After the first 

transaction is executed, states are changed accordingly and are written into an immuta-

ble block. There is no way to undo this block. The second transaction is executed only 

when the node has enough remaining energy after the first sale. If the remaining energy 

is not enough, the second transaction is rejected by the smart contract, wasting the send-

er’s Ethereum gas. Gas refers to the fee required to send a transaction on Ethereum 

blockchain [4]. 

 

Figure 8. Prevent double sale by keeping the states of energy inside a smart contract. 

In addition, a smart contract event is called when an element is appended, changed 

and deleted. All nodes can detect the event and execute any functions accordingly. Thus, 

energy trading can be performed automatically and exactly by a smart contract pro-

grammed to implement a given trading procedure. Consequently, our proposed system 

performs a safe and transparent P2P energy trading in a trustless environment by using 

a smart contract. 

4.3. Inject Energy Using Whisper 

We assume that a distribution network within a microgrid allows two-way electric 

transmission between prosumers/consumers and the energy storage system (ESS) in the 

DSO. Smart meters are sealed to be tamper-proof. For simplicity, we assume there is no 

power loss in electric transmission. As illustrated in Figure 9, when prosumer i injects 

energy into the ESS, the prosumer uses its own messaging address 𝑚𝑠𝑔𝐴𝑑𝑑𝑟𝑃𝑖  to send 

a message to the DSO’s messaging address, 𝑚𝑠𝑔𝐴𝑑𝑑𝑟𝐷 via Whisper [23]. The message 

contains the prosumer’s account (𝑡𝑥𝐴𝑑𝑑𝑟𝑃𝑖) and the amount of injected energy (𝐸𝑖). Up-

on receipt of the message, the DSO checks whether the energy is injected. If energy is in-

jected as promised in the Whisper message, the DSO sends a transaction to execute “in-

ject” function to the smart contract address smcAddr. The smart contract function is on-

ly executed when the qualified sender, as dictated in the smart contract (the DSO in this 

case), sends an “inject” transaction. The smart contract checks whether the sender of the 

transaction is truly the DSO by using the require function (line 24) which verifies the 

digital signature from the DSO’s with its known public key. If the transaction is consid-

ered valid by the smart contract, a new element with the state of “injected” and the 

amount of energy (𝐸𝑖) is appended to the array for prosumer i. 



Sensors 2021, 21, 1985 15 of 27 
 

 

 

Figure 9. Appending an element to the energy ownership structure after energy injection. 

4.4. Matching between Prosumers and Consumers 

Prosumers and consumers send requests to sell (supply) and to purchase (demand) 

during aggregation. The aggregate sum of sell (supply) amounts may not be equal to the 

aggregate sum of purchase (demand) amounts. We calculate a ratio (𝑞) using the total 

supply (𝑆) and the total demand (𝐷) as in Equations (7) and (8). 

𝐸𝑆(𝑡) = ∑ 𝑆𝑖(𝑡)

𝑛𝑝

𝑖=1

, 𝐸𝐷(𝑡) = ∑ 𝐷𝑗(𝑡)

𝑛𝑐

𝑗=1

   𝑆𝑖(𝑡), 𝐷𝑗(𝑡) ≥ 0 (7) 

𝑞 = 𝐸𝐷(𝑡) 𝐸𝑆(𝑡)  ⁄  (8) 

𝑆𝑖(𝑡) is the amount of energy to sell (supply) requested by prosumer i. 𝐷𝑗(𝑡) is the 

amount of energy to purchase (demand) requested by consumer j. 𝑛𝑝 and 𝑛𝑐 are the 

number of prosumers and the number of consumers, respectively. 

In the matching procedure, 𝑆𝑚𝑖
 is the amount of energy actually sold by prosumer 

i and 𝐷𝑚𝑗
 is the amount of energy actually purchased by consumer j as in Equations (9) 

and (10). Note that ∑ 𝑆𝑚𝑖
𝑛𝑝

𝑖=1
 is equal to ∑ 𝐷𝑚𝑗

𝑛𝑐
𝑖=1 .  

𝑆𝑚𝑖
= {

𝑞 ∙ 𝑆𝑖(𝑡)  𝑖𝑓 𝐸𝑆(𝑡) ≥ 𝐸𝐷(𝑡)
𝑆𝑖(𝑡)          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9) 

𝐷𝑚𝑗
= {

𝐷𝑗(𝑡)       𝑖𝑓 𝐸𝑆(𝑡) ≥ 𝐸𝐷(𝑡)

𝐷𝑗(𝑡)/𝑞           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10) 

4.5. Settlement 

We choose to make the settlement between sellers (prosumers) and buyers (con-

sumers) go through a smart contract. The role of the smart contract is similar to escrow. 

The smart contract is a blockchain-based program that encodes the conditions for ful-

fillment of an agreement between participants. It enables the agreed procedures to be 

securely executed without any third party. 

Figure 10 illustrates our settlement procedure. The aggregation phase begins by the 

DSO’s transaction to execute the “Roundstart” function (line 28). All prosumers and 

consumers make requests to sell or purchase energy by sending transactions to execute 

the “RequestSell” (line 30) or “RequestBuy” (line 35) functions. 
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Figure 10. The process of payment between prosumers and consumers in the energy trading. 

Consumer j deposits 𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥 , the maximum possible amount of payment (actu-

al price 𝑝(𝑡) ≤ 𝑝𝑚𝑎𝑥), to the smart contract address 𝑠𝑚𝑐𝐴𝑑𝑑𝑟 by executing the “Trans-

fer” function (line 37). The payment in our system uses tokens that follow the standard 

ERC-20(Ethereum Request for Comment 20) [25]. When matching is complete and the 

DSO executes the “Trade” function (line 57), prosumer i receives the payment 𝑆𝑚𝑖
∙ 𝑝(t) 

(lines 59–60) and consumer j receives the change 𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥 − 𝐷𝑚𝑗
∙ 𝑝(𝑡) (lines 63–64) 

(performed by updating the corresponding balances on the smart contract). Finally, an 

element with the state of “purchased” is appended to the consumer’s array to reflect en-

ergy purchase. 

Algorithm 1: Energy Trading Algorithm 

1: procedure ENERGYTRADING  

2: txAddr ← hash(public key), msgAddr ← hash(public key of whisper) 

3: Prosumer𝑖 ← txAddr𝑃𝑖, msgAddr𝑃𝑖, 𝑂𝑝𝑖, 𝐸𝑖, 𝑆𝑖(𝑡), 𝑆𝑚𝑖   (1 ≤ i ≤ 𝑛𝑝) 

4: Consumer𝑗  ← txAddr𝐶𝑗, msgAddr𝐶𝑗, 𝑂𝑐𝑗, 𝐷𝑗(𝑡), 𝐷𝑚𝑗      (1 ≤ 𝑗 ≤ 𝑛𝑐) 

5: DSO ← txAddr𝐷, msgAddr𝐷, 𝐸𝑆(𝑡), 𝐸𝐷(𝑡) 

6: Smart Contract(SmC) ← smcAddr 

7: procedure REGISTER(Prosumer1, … , Prosumer𝑛𝑝
, Consumer1, … , Consumer𝑛𝑐

)  

8: enum State{register, injected, board, match, purchased} 

9: struct EnergyOwnership{ 

10: address account; uint amount; State state; uint timestamp;} 

11: if txAddr ∈ txAddr𝑃𝑖 then 

12: txAddr𝑃𝑖 . sendtx (𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟,  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

13: EnergyOwnership[ ] 𝑂𝑝𝑖; 

14: SmC.event(𝑂𝑝𝑖 ← (txAddr𝑃𝑖 , 0, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

15: else if txAddr ∈ txAddr𝐶𝑗 then 

16: txAddr𝐶𝑗 . sendtx (𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟,  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

17: EnergyOwnership[ ] 𝑂𝑐𝑗; 

18: SmC.event(𝑂𝑐𝑗 ← txAddr𝐶𝑗 , 0, 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

19: end if 

20: end procedure 

21: procedure INJECTENERGY(𝐸𝑖) 

22: msgAddr𝑃𝑖 . msg (𝐼𝑛𝑗𝑒𝑐𝑡, txAddr𝑃𝑖,  𝐸𝑖) ⇒ msgAddr𝐷 

23: txAddr𝐷. sendtx (𝐼𝑛𝑗𝑒𝑐𝑡, txAddr𝑃𝑖,  𝐸𝑖,  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

24: SmC.require(msg. sender == txAddr𝐷) 

25: SmC.event(𝑂𝑝𝑖 ← (txAddr𝑃𝑖 , 𝐸𝑖 , 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

26: end procedure 

27: procedure AGGREGATION (Prosumer1, … , Prosumer𝑛𝑝
, Consumer1, … , Consumer𝑛𝑐

 

during ∆𝑡) 

28: txAddr𝐷. sendtx (𝑅𝑜𝑢𝑛𝑑𝑠𝑡𝑎𝑟𝑡,  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

29: 𝑜𝑟𝑑𝑒𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠(𝑠𝑡𝑎𝑡𝑒 ∶ 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝑝𝑖 
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30: txAddr𝑃𝑖 . sendtx (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑆𝑒𝑙𝑙,  𝑆𝑖,  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

31: if SmC.validate(𝑆𝑖 ≤ 𝐸𝑖 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈ ∆𝑡) = 𝑡𝑟𝑢𝑒 then 

32: SmC.event(𝑂𝑝𝑖 ← (txAddr𝑃𝑖 , 𝑆𝑖(𝑡), 𝑏𝑜𝑎𝑟𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

33: SmC.event(𝑂𝑝𝑖 ← (txAddr𝑃𝑖 , 𝐸𝑖 = 𝐸𝑖 − 𝑆𝑖 , 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

34: end if 

35: txAddr𝐶𝑗 . sendtx (𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝐵𝑢𝑦,  𝐷𝑗(𝑡),  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

36: if SmC.validate(𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥 ≤ txAddr𝐶𝑗 . 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∈ ∆𝑡) = 𝑡𝑟𝑢𝑒 then 

37: txAddr𝐶𝑗 . sendtx (𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟,  smcAddr, 𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥,  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

38: end if 

39: end procedure 

40: Procedure MATCHING (Prosumer1, … , Prosumer𝑛𝑝
, 𝑆1(𝑡), … , 𝑆𝑛𝑝

(𝑡), Consumer1 , …, 

41: Consumer𝑛𝑐
, 𝐷1(𝑡),…,𝐷𝑛𝑐

(𝑡) about ∆𝑡) 

42: txAddr𝐷. sendtx (𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔, ∆𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

43: 𝐸𝑆(𝑡) ← ∑ 𝑆𝑖(𝑡)
𝑛𝑝

1 , ED(t) ← ∑ 𝐷𝑗(𝑡)
𝑛𝑐
1  

44: 𝑞 = 𝐸𝐷(𝑡)/𝐸𝑆(𝑡) 

45: if E𝑆(𝑡) ≥ 𝐸𝐷(𝑡) 

46: 𝑆𝑚𝑖 = 𝑞 ∙ 𝑆𝑖(𝑡), 𝐷𝑚𝑗 = 𝐷𝑗(𝑡), ∑ 𝑆𝑚𝑖

𝑛𝑝

1 = ∑ 𝐷𝑚𝑗
𝑛𝑐
1  

47: else if 𝐸𝐷(𝑡) > 𝐸𝑆(𝑡) 

48: 𝑆𝑚𝑖 = 𝑆𝑖(𝑡), 𝐷𝑚𝑗 = 𝐷𝑗(𝑡)/𝑞, ∑ 𝑆𝑚𝑖

𝑛𝑝

1 = ∑ 𝐷𝑚𝑗
𝑛𝑐
1  

49: end if 

50: SmC.delete(𝑂𝑝𝑖 ← (txAddr𝑃𝑖 , 𝑆𝑖(𝑡), 𝑏𝑜𝑎𝑟𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

51: SmC.event(𝑂𝑝𝑖 ← (txAddr𝑃𝑖 , 𝑆𝑚𝑖
, 𝑚𝑎𝑡𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

52: SmC.event(𝑂𝑝𝑖 ← (txAddr𝑃𝑖 , 𝑆𝑖(𝑡) − 𝑆𝑚𝑖
, 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

53: SmC.event(𝑂𝑐𝑗 ← (txAddr𝐶𝑗 , 𝐷𝑚𝑗
, 𝑚𝑎𝑡𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

54: end procedure 

55: procedure TRADE ENERGY(Prosumer1, … , Prosumer𝑛𝑝
, Consumer1, … , Consumer𝑛𝑐

) 

56: Pricing by DSO : 𝑝 =
2

𝜋
∙ 𝑝𝑐𝑜𝑛 ∙ tan−1 (ln (

𝐸𝐷(𝑡)

𝐸𝑆(𝑡)
))

𝑘
+ 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 

57: txAddr𝐷. sendtx (𝑇𝑟𝑎𝑑𝑒, 𝑝, ∆𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ smcAddr 

58: for 𝑖 = 1 to 𝑛𝑝 

59: txAddr𝑃𝑖 . 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 = txAddr𝑃𝑖 . 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 + 𝑆𝑚𝑖 ∙ 𝑝(𝑡) 

60: smcAddr. sendtx (𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟,  smcAddr, 𝑆𝑚𝑖 ∙ 𝑝(𝑡),  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ txAddr𝑃𝑖 

61: SmC.delete(𝑂𝑝𝑖 ← (txAddr𝑃𝑖 , 𝑆𝑚𝑖 , 𝑚𝑎𝑡𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

62: for 𝑗 = 1 to 𝑛𝑐 

63: txAddr𝐶𝑗 . 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 = txAddr𝐶𝑗 . 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 + (𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥 − 𝐷𝑚𝑗 ∙ 𝑝(𝑡)) 

64: smcAddr. sendtx (𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟,  smcAddr, 𝐷𝑗(𝑡) ∙ 𝑝𝑚𝑎𝑥 − 𝐷𝑚𝑗 ∙ 𝑝(𝑡),  𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) ⇒ txAddr𝐶𝑗 

65: SmC.delete(𝑂𝑐𝑗 ← (txAddr𝐶𝑗 , 𝐷𝑚𝑗 , 𝑚𝑎𝑡𝑐ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

66: SmC.event(𝑂𝑐𝑗 ← (txAddr𝐶𝑗 , 𝐷𝑚𝑗 , 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)) 

67: smcAddr. 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠 = 0 
68: end procedure 

69: end procedure 

Table 1. Notations for energy trading algorithm. 

txAddrX An externally owned account in Ethereum for X 

msgAddrX An address for X in Ethereum messaging Whisper 

txAddr𝑃𝑖 Transaction address of the i-th producer 

msgAddr𝑃𝑖 Message address of the i-th producer 

txAddr𝐶𝑗 Transaction address of the j-th consumer 

msgAddr𝐶𝑗 Message address of the j-th consumer 

𝐸𝑖 Energy amount injected by prosumer i 
𝑂𝑝𝑖 Producer’s energy ownership structure 

𝑂𝑐𝑗 Consumer’s energy ownership structure 

𝑆𝑖 Amount of intent to sell 

𝑆𝑚𝑖 Matched amount of 𝑆𝑖 
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𝐷𝑗 Amount of demand to buy 

𝐷𝑚𝑗  Matched amount of 𝐷𝑗 

5. Experiment Using a Test Ethereum Blockchain 

5.1. Creation of Virtual Prosumers and Consumers 

The experiment is performed using personas which are virtually created prosumers 

and consumers. We assume each prosumer only sells the energy in the simulation. We 

define prosumers and consumers using 4 parameters, respectively: MaxSupply, Min-

Supply, PriceUp and PriceDown for each prosumer and MaxDemand, MinDemand, 

PriceUp and PriceDown for each consumer. Table 2 defines the parameters. 

Table 2. Parameters for personas representing prosumers and consumers. 

Parameter (Postfix) Description 

i.MaxSupply The maximum supply that prosumer i can request to sell 

i.MinSupply The minimum supply that prosumer i can request to sell 

j.MaxDemand The maximum demand that consumer j can request to buy 

j.MinDemand The minimum demand that consumer j can request to buy 

i.PriceUp,  

j.PriceUp 
Highest price (No more increase/decrease in supply/demand after the price reaches this value) 

i.PriceDown, j.PriceDown Lowest price (No more increase/decrease in supply/demand after the price reaches this value) 

It is reasonable for us to assume that prosumers increase/decrease supply and con-

sumers decrease/increase demand on increase/decrease in price with presumed upper 

limit (MaxSupply, MaxDemand) and a lower limit (MinSupply, MinDemand). For sim-

plicity, we assume prosumer i requests to sell 𝑖. 𝑆𝑢𝑝𝑝𝑙𝑦(𝑡) at the start of the trading 

round t. The 𝑖. 𝑆𝑢𝑝𝑝𝑙𝑦(𝑡) depends on 𝑝(𝑡 − 1), the matching price in round (𝑡 − 1). It 

is determined as in Equation (11). Consumer j requests to purchase 𝑗. 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) which 

is similarly determined in Equation (12). 

𝑖. 𝑆𝑢𝑝𝑝𝑙𝑦(𝑡) = {𝑝(𝑡 − 1) − 𝑖. 𝑃𝑟𝑖𝑐𝑒𝐷𝑜𝑤𝑛} ×
𝑖.𝑀𝑎𝑥𝑆𝑢𝑝𝑝𝑙𝑦−𝑖.𝑀𝑖𝑛𝑆𝑢𝑝𝑝𝑙𝑦

𝑖.𝑃𝑟𝑖𝑐𝑒𝑈𝑝−𝑖.𝑃𝑟𝑖𝑐𝑒𝐷𝑜𝑤𝑛
+ 𝑖. 𝑀𝑖𝑛𝑆𝑢𝑝𝑝𝑙𝑦  (11) 

𝑗. 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) = {𝑗. 𝑃𝑟𝑖𝑐𝑒𝑈𝑝 − 𝑝(𝑡 − 1)} ×
𝑗.𝑀𝑎𝑥𝐷𝑒𝑚𝑎𝑛𝑑−𝑗.𝑀𝑖𝑛𝐷𝑒𝑚𝑎𝑛𝑑

𝑗.𝑃𝑟𝑖𝑐𝑒𝑈𝑝−𝑗.𝑃𝑟𝑖𝑐𝑒𝐷𝑜𝑤𝑛
+ 𝑗. 𝑀𝑖𝑛𝐷𝑒𝑚𝑎𝑛𝑑  (12) 

Figure 11 illustrates requested energy (𝑖. 𝑆𝑢𝑝𝑝𝑙𝑦(𝑡) or 𝑗. 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡)) vs. 𝑝(𝑡 − 1) 

for prosumer i (i.PriceUp = 175, i.PriceDown = 125, i.MaxSupply = 2000, i.MinSupply = 

500) and a consumer j (j.PriceUp = 175, j.PriceDown = 125, j.MaxDemand = 2000, 

j.MinDemand = 500) as two personas. 

 

Figure 11. An illustration of (𝑖. 𝑆𝑢𝑝𝑝𝑙𝑦(𝑡) or 𝑗. 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡)) vs. 𝑝(𝑡 − 1). 
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Figure 12 illustrates the impact of “k” in Equation (6) on the convergence to equilib-

rium (𝑅(𝑡) = 1) assuming prosumer i and consumer j respond to price change as in Fig-

ure 11. Figure 12 shows 𝑝(𝑡) vs. 𝑅(𝑡) using Equation (6) with 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒  = 150 and 𝑝𝑐𝑜𝑛 

= 100 for (a) k = 3, (b) k = 5 and (c) k = 7, respectively. We define convergence area as 

where 𝑝(𝑡) is within 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ± 1%. 

  
(a) 

  
(b) 
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(c) 

Figure 12. 𝑝(𝑡) vs. 𝑅(𝑡) using Equation (6), 𝑝𝑏𝑎𝑙𝑎𝑛𝑐𝑒  = 150 and 𝑝𝑐𝑜𝑛 = 100, (a) k = 3, (b) k = 5 and (c) 

k = 7. 

For the smallest value of k (= 3) as in Figure 12a, convergence speed is slowest (it 

takes the largest number of rounds (= 12) to arrive within the convergence area). How-

ever, the convergence area is closest to equilibrium, 10−0.13 ≤ 𝑅(𝑡) ≤ 100.13. For largest 

value of k (= 7) as in Figure 12c, convergence speed is fastest (it takes the smallest num-

ber of rounds (= 8) to arrive within the convergence area). However, the convergence 

area is farthest from equilibrium, 10−0.25 ≤ 𝑅(𝑡) ≤ 100.25. 

For the medium value of k (= 5) as in Figure 12b, the convergence speed (= 10 

rounds) and the convergence area lies between these two extremes. This illustrates that 

our dynamic pricing scheme enables the DSO to adjust “k” to make a tradeoff between 

convergence speed and exactness of balancing (narrowness of convergence area) to suit 

its purpose.  

5.2. Setup of an Experimental Ethereum Blockchain  

Raspberry Pi devices are chosen to emulate the 11 nodes participating in the test 

Ethereum blockchain. The nodes implement virtual prosumers, consumers and the DSO. 

Each node uses the Geth [22] command line interface (CLI) to access the blockchain 

network, deploy smart contracts, send a transaction and detect events from smart con-

tracts. 

All nodes participating in a private Ethereum blockchain should share a genesis 

block [22]. In our test the Ethereum blockchain has a DSO, 5 prosumers, 5 consumers 

(each with an account holding 5 Ethereums) and a smart contract. The source code used 

in our test can be found at: https://github.com/skj1080/energy_trading (accessed on 8 

March 2021). 

All nodes participating in the Ethereum blockchain need a smart contract address 

to execute smart contract functions or to be notified of any events from the smart con-

tract. 

5.3. Execute Functions or Detect Events in a Smart Contract  

Figure 13 shows prosumers, consumers and DSO access to the Ethereum blockchain 

via Node.js [26]. The Web3 library in Node.js is used to access the Ethereum Virtual 

Machine. After a smart contract address is generated, each node can execute a smart 

contract function by sending a transaction and detect any resulting events declared 

within the function in accordance with the trading procedure. IoT devices for any con-
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trols, including transmission of energy, can be linked to certain events from the smart 

contract through the Node.js. For example, energy transmission after matching can be 

performed in an autonomous way with appropriate IoT control, removing human in-

volvement. 

 

Figure 13. Our testbed for experiment of our P2P energy trading on Ethereum blockchain. 

The execution of the functions in a smart contract may result in events which can be 

detected by all participating nodes. The events are usually declared in the smart con-

tract.  

Figure 14 shows our testbed representation made of 5 Raspberry Pis which act as 2 

prosumers, 2 consumers and a DSO. Figure 15 shows the GUI built with MATLAB for the 

DSO in the testbed. It shows requests to sell, requests to purchase from two prosumers, 

two consumers and the DSO. The DSO can choose “k” value and it determines the price 

curve in the center-right. The graph at the bottom shows the change of price as trading 

periods progress. 

 

Figure 14. Testbed for experimentation. 
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Figure 15. A GUI built with MATLAB for experimentation. 

5.4. Create Persona from Real Prosumers and Consumers 

We create personas from real prosumers and consumers at 5 microgrids in Toronto, 

Canada [13]. Table 3 shows an average supply per hour by 5 prosumers and Table 4 

shows an average demand per hour by 5 consumers. We chose the 24th hour to illustrate 

how our energy trading is actually implemented in each trading period. Total energy 

supply from the 5 prosumers is 336 kWh, and total energy demand is 228 kWh. We as-

sume total energy supply is the aggregate from the 5 prosumers in Table 5. Similarly, 

total energy demand is the aggregate from 5 consumers. 

Table 3. Average total energy supply per hour per day from 5 chosen microgrids. 

Average Energy Supply per Hour 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

kWh 388 386 401 416 442 468 503 538 573 608 637 665 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

kWh 696 727 736 745 738 731 695 658 596 534 435 336 

Table 4. Average total energy demand per hour per day from 5 chosen microgrids. 

Average Energy Demand per Hour 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 

kWh 336 324 330 335 353 370 406 442 493 544 580 616 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

kWh 651 686 702 718 707 696 657 618 530 442 335 228 

Table 5. Supply and demand presented by prosumers and consumers. 

Prosumer Supply Consumer Demand 

1 71 kWh 1 50 kWh 

2 55 kWh 2 53 kWh 

3 60 kWh 3 35 kWh 

4 100 kWh 4 60 kWh 

5 50 kWh 5 30 kWh 

Total 336 kWh Total 228 kWh 

The experiment is performed according to the trading procedure in Section 4. 

Transaction results are recorded in the form of BigNumber {s: sign, e: exponent, c: value} 

through event detection. BigNumber is a Javascript library for arbitrary-precision arith-
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metic [27]. The state of energy is displayed as 0: register, 1: injected, 2: board, 3: match, 

and 4: purchased. More details about the experiment as follows. 

5.4.1. Inject Energy 

In this procedure, a prosumer injects the energy into the ESS of the DSO and sends a 

message to the DSO using Whisper. The DSO receives the message which contains the 

prosumer’s account and the amount of injected energy. Upon receipt of the message, the 

DSO sends a transaction to execute the “inject” function after physical checking of in-

jected energy. After that, a new element is appended to the prosumer’s ownership array. 

5.4.2. Aggregation 

Prosumers and consumers make requests to sell or purchase energy by sending 

transactions. Five prosumers and five consumers present supply (sell) and demand 

(purchase) as shown in Table 5. 

When a consumer’s transaction is confirmed as valid, each consumer deposits to-

kens (each consumer’s demand multiplied by the maximum price 130) to the smart con-

tract address. 

5.4.3. Matching 

After the aggregation, the DSO computes total supply (request to sell), total demand 

(request to purchase) and the ratio 𝑞 (total demand/total supply). If total supply is 336 

kWh and total demand is 228 kWh as in our example, the ratio 𝑞 is 0.68. Since total 

supply (S) is greater than total demand (D) each prosumer is able to sell q × S (matched 

supply) and remainder (unmatched supply) is injected back to itself. Refer to the state 

diagram in  

Figure 3. Table 6 shows a result of matching. All matched supply and demand are ap-

pended to the ownership array as an element with the state of “match”. All unmatched 

supplies are appended as an element with the state of “injected” to each array. 

Table 6. Matching results for all prosumers and consumers. 

Prosumer 
Matched  

Supply 

Unmatched 

Supply 
Consumer 

Matched  

Demand 

1 48 kWh 23 kWh 1 50 kWh 

2 37 kWh 18 kWh 2 53 kWh 

3 41 kWh 19 kWh 3 35 kWh 

4 68 kWh 32 kWh 4 60 kWh 

5 34 kWh 16 kWh 5 30 kWh 

Total  228 kWh 108 kWh Total 228 kWh 

5.4.4. Settlement 

One single price is used for a trading period. The price is determined by Equation 

(6) with R(t) is equal to q = 𝐸𝐷(𝑡)/𝐸𝑆(𝑡). If we assume k = 3, 𝑝(𝑡) = 98.9 𝑇𝑜𝑘𝑒𝑛𝑠/kWh. 

When the DSO sends a transaction to execute the “Trade” function, each prosumer is 

paid 𝑝(𝑡) times the matched supply. Each consumer is refunded its deposit minus 

matched demand times 𝑝(𝑡). The results are shown in Table 7. 

Table 7. The number of tokens paid to prosumers and the refund to consumers. 

Prosumer Paid Consumer Refund 

1 4747.2 1 1555 

2 3659.3 2 1648.3 

3 4054.9 3 1088.5 

4 6725.2 4 1866 

5 3362.6 5 933 

Total 22,549.2 Total 7090.8 
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5.5. Ethereum Gas Cost 

Table 8 shows Ethereum gas (gas) consumption for major functions in our imple-

mentation along with their monetary cost in US dollars (if we assume our system runs 

on the public Ethereum network). As of 4 January 2021, 1 ether costs around $969 and 

the average price of unit gas is 190 Gwei (190 × 10−9 ether) according to Etherscan [28]. 

This estimate of gas consumption serves as a measure for the complexity of our system. 

The Deployment function is performed only once at the start of the trading system while 

other functions may be performed in each round. 

Table 8. Gas consumption for the functions in our system assuming the public Ethereum network. 

Function Gas Consumption Gas Cost ($) 

Deployment 3,003,112 552.90 

Register 160,284 29.51 

Inject 131,679 24.24 

Request to Buy 23,523 4.33 

Request to Sell 23,591 4.34 

Matching 354,520 65.27 

Transfer 25,574 4.71 

In Table 9, we show total gas consumption during a period in our implementation. 

We also estimate total gas consumption for 𝑛𝑝 prosumers and 𝑛𝑐 consumers. Howev-

er, the gas consumption per user remains the same. 

Table 9. Total gas consumptions per trading period. 

Total Gas Consumptions 

4 Prosumers and 4 Consumers 𝒏𝒑 Prosumers, 𝒏𝒄 Consumers 

3,003,112 3,003,112 

1,282,272 (𝑛𝑝 + 𝑛𝑐) × 160,284 

526,716 𝑛𝑝 × 131,679 

94,092 𝑛𝑐 × 23,523 

94,364 𝑛𝑝 × 23,591 

354,520 354,520 

204,592 (𝑛𝑝 + 𝑛𝑐) × 25,574 

5,559,668 
3,357,632 

+ 𝑛𝑝 × 341,128 + 𝑛𝑐 × 209,381 

Table 10 shows that the total gas consumption in our system is smaller than Galal 

and Youssef [29] by 41%. Note that our system removes the ZKP(Zero Knowledge Proof) 

related functions needed for security of bidding in Galal and Youssef [29].  

Table 10. Comparison of our system against Galal and Youssef [29] in terms of gas consumption. 

Our System Galal and Youssef [29] 

Function Gas Consumption Function Gas Consumption 

Deployment 3,003,112 Deployment 3,131,261 

Register 160,284 Bid 130,084 

Inject 131,679 Reveal 132,849 

Request to Buy 23,523 ClaimWinner 166,288 

Request to Sell 23,591 ZKPCommit 656,689 

Matching 354,520 ZKPVerify 2,002,490 

Transfer 25,574 VerifyAll 46,580 

  Withdraw 47,112 

Total 3,722,283 Total 6,313,353 
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Figure 16 compares a progressive gas consumption of our system against Galal and 

Youssef [29] with 5 prosumers and 5 consumers for up to 10 rounds. As the number of 

trading rounds increase, saving of gas in our system against Galal and Youssef [29] in-

creases by as much as 78%. 

 

Figure 16. Progressive gas consumption of our system compared against Galal and Youssef [29]. 

Table 11 shows how to estimate needed storage as a function of participants (𝑛𝑝 and 

𝑛𝑐). In Ethereum, there are 2256 different keys and each key can store 32 bytes. So, that 

is a total of 2261 bytes that could be stored [15]. We may store as many as 2261 bytes in-

side an EVM. We need (𝑛𝑝 × 468 + 𝑛𝑐 × 340 + 2144) bytes for trading with 𝑛𝑝 prosum-

ers and 𝑛𝑐 consumers. The constraint for the number of prosumers and in terms of 

storage can be represented as in Equation (13). 

2261 ≥ 𝑛𝑝  ×  468 + 𝑛𝑐  ×  340 + 2144 (13) 

Table 11. Need storage as a function of participants. 

Participant Contents Per Participant 
𝒏𝒑 Prosumers and  

𝒏𝒄 Consumers Size 

Prosumer 
Energy ownership states 

(5 key/value pairs) + Account 
5 × 64 bytes + 52 bytes = 372 bytes 𝑛𝑝 × 372 bytes 

Consumer 
Energy ownership states 

(3 key/value pairs) + Account 
3 × 64 bytes + 52 bytes = 244 bytes 𝑛𝑐 × 244 bytes 

DSO 
Management 

(ex. Price Setting) 
2 KB 2 KB 

Smart Contract Registration of participants 96 bytes per participant (𝑛𝑝 + 𝑛𝑐 + 1) × 96 bytes 

Total - - (𝑛𝑝 × 468 + 𝑛𝑐 × 340 + 2144) bytes 

The storage capacity required in our system increases with the number of partici-

pants. The following table shows the smart contract storage used for each participant. 

The storage requirement increases by 468 bytes per prosumer and 340 bytes per 

consumer. The storage limit of the smart contract is 2261. In this case, there is a big dif-

ference between storage requirement and storage limitation. Therefore, we expect that 

there will be no problem in terms of storage in our system. 

In R. Skowronski [16], the number of transactions for Bitcoin is derived as in Equa-

tion (14) 

𝜏 = (
𝛽

𝜇
 ×  

𝜌

𝜃
) (14) 
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where 𝛽, 𝜇, 𝜌 and 𝜃 denote block size, transaction size, block creation interval and 

time frame. The transactions per second (tps) can be obtained by dividing 𝜏 by 𝜃. Our 

trading system is built on Ethereum and the number of transactions is usually limited by 

the maximum allowable gas per block [4]. 

Assume we have 𝑛𝑝  prosumers and 𝑛𝑐 consumers. Each prosumer consumes 𝑔𝑝 

gas and each consumer consumes 𝑔𝑐  gas per trading period. The gas limit per block is 

𝑔𝑏. Then we need (𝑔𝑝𝑛𝑝 + 𝑔𝑐𝑛𝑐)/𝑔𝑏 blocks to perform one trading period. If we assume 

𝜌 to be a block interval time in seconds, we may represent trading matches per second 

as in Equation (15) 

𝑔𝑏

(𝑔𝑝𝑛𝑝 + 𝑔𝑐𝑛𝑐)
 ×  

1

𝜌
 (15) 

where 𝑛𝑝  and 𝑛𝑐  denote the number of prosumers and consumers, respectively. We 

multiply 86,400 (24 × 60 × 60) to the number in Equation (15) to obtain the maximum 

number of trading matches per day. Recently, the maximum gas limit per block, 𝑔𝑏, is 

usually set to 12,500,000 [28]. In our trading system experiment, 𝑔𝑝  is around 200,000 

and 𝑔𝑐  is around 30,000. 

In our current implementation, we have only a few states for which we have enu-

merated all possible state changes. So, we do not expect any inevitable disturbances. 

However, if unthinkable technical faults erupt, then the gas limit is the last resort. We 

limit gas allowance to only covering valid transactions to avoid fatal damage. To deal 

with unexpected changes in demand, we only allow manageable numbers of prosumers 

and consumers to join our trading system on a private Ethereum blockchain. 

6. Conclusions 

In this paper, we propose a smart contract-based P2P energy trading system with a 

dynamic pricing model. The smart contract resides on the blockchain shared by partici-

pants and hence guarantees exact execution of trade and keeps immutable transaction 

records. It removes high costs and overheads needed against hacking or tampering in 

traditional server-based P2P energy trade systems. 

Double sale is prevented by maintaining the state of energy inside the smart con-

tract. Furthermore, we create a dynamic pricing model which enables the DSO to make a 

trade-off between convergence speed and exactness of balancing between supply and 

demand within a microgrid. 

We create personas participating in energy trading and conduct virtual simulations 

on a testbed with 5 prosumers, 5 consumers and the DSO. Our system saves gas needed 

to operate by as much as 78% compared with a known bidding style energy trading sys-

tem on blockchain. 
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